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LETTER TO THE EDITOR 

Parabosons, Virasoro-type algebras and their deformations 

R Chakrabartit and R Jagannathants 
t Department of Theoretical Physics University of Madras, Ouindy Campus, Madm 6wo25. 
India 
t The Institute of Mathematical Sciences, CIT Campus, " m i ,  Madras 6001 13. India 

Received 9 February 1994 

Ahshact Two-parametfx ( p ,  q)  deformation of a panbosonic algebra underlying the two- 
paticle Cnlogero model is considered. The Fock-space representation, Bargmann-Pock 
representation, coherent states. spectrum-generating algebra and a hidden supersymmetry are 
discussed. The paraboson algebra induces a centreless Vudsom-type algebra with a doubling of 
the space of generators. A two-parameter deformation of lhis Wrasom-iype algebra is studied. 

Study of generalized oscillator systems is becoming an interesting subject pursued actively 
with a view to exploring possible new physical situations. Recently, the algebra 

has been introduced [1,2] and found 121 to underly the two-particle Calogero model 131. 
Calling the algebra (1) a modified oscillator algebra and combining it with the idea of the 
well known q-deformation (41 of the oscillator algebra a new generalized oscillator algebra 
has now been obtained [SI with the motivation of exploiting it to construct new integrable 
systems. 'Ibis new algebra [SI reads 

aut -qat, = (1 + 2uK)q-N 
[ N , a ]  = - a  [N ," t ]  = u t .  

K = (-1)N q .  U E R 
(2) 

When the parameter 2v is an integer > 1 it has been shown [6] that the algebra (1) represents 
a single-mode oscillator obeying para-Bose statistics of order 2ufl .  Hence, we shall refer to 
the algebra (l), in general for any U E R, as a parabosonic algebra. Since a two-parameter 
generalization of the algebra (2 )  would provide more flexibility in the context of model 
building we consider here such a generalization by combining the ideas of modification (1) 
and ( p ,  q)-deformation [7,81 of the oscillator algebra. For the resulting ( p .  q)-deformation 
of (1) we discuss, following [SI, the corresponding Fock-space, spectrum-generating algebra 
and the hidden supersymmetry engendered by the presence of the so-called Klein operator 
K ;  the Bargmann-Fock realization, and coherent states are also discussed. 

Quantum groups and algebras with multiple deformation parameters have been studied 
from the point of view of construction, representation and applicability in concrete physical 
models [7-121. Considering the quantum algebra .!/p,q&4(2)), with two deformation 
parameters ( p ,  q) ,  it has been noted [lo] that although the algebraic structure can be mapped 
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on to a Cr~(gf(2)) with a single deformation parameter Q = fi, the parameters p and q 
are genuinely independent as a dependence of the CO-multiplication rules and the universal 
%matrix on A = persists. The ( p ,  q)-oscillator algebra [7 ,8 ]  

aat -qat, = p - N  [ N , a ]  = - a  [N,a t]  = at (3) 

is obtained as a contraction limit of UP,&f(2)) and generates [7] a Jordan-Schwinger-type 
realization thereof. The algebra (3) has been used [13] in the construction of a ( p .  9)- 
deformed Virasoro algebra in which the CO-algebraic structure of the functional generator 
exhibits the genuine two-parametric nature of the deformation. 

In the spirit of the above discussion, let us first consider a two-parameter deformation 
of the parabosonic algebra (1) given by ' 

aut -quia = (1 + 2 ! ~ K ) p - ~  
(4) IN, a] = - a  

which reduces to (1) when p = q = 1. The algebra (2) considered in 151 is the special case 
of (4) corresponding to the choice p = q. 

As has often been recognized in the literature, any generalized bosonic oscillator algebra 
can be presented in the form 

K = (-l)N p , q ,  v E R  
[N, at]  = at 

at, = @(NI aut = @(N t I )  [N, a ]  = - a  [N. a'] =at  (5 ) 

where @(N) characterizes the system and is a real non-negative function (@(n) 2 0 for any 
n 2 0). In the case of the system (4) 

Now, @(O) = 0 and we shall require @(n) > 0 for any n > 0. Then, the condition 
on the parameters p ,  q,  U E lR is as follows. With both p ,  q > 0 or < 0 and 
x = (4 - p - ' ) /  (4 + P - 1 )  

2 v >  -1 for p q  > 1 - x-' > 2v > -1 for 0 < p q  < I ,  (7)  

The Fock representation of the algebra (4) is easily constructed by the action of monomials 
in at on the vacuum state 10) assumed to be unique and defined by a10) = 0, NIO) = 0. The 
complete orthonormal set of eigenstates of the number operator N (In) I n = 0, 1,2, . . .) 
satisfying 

(8) 
NI4 = nln) @(" = @(n)ln) 

a l n ) = m l n - l }  a + l n ) = m l n + l )  

are given by 

@(n)! = @(n)@(n - 1) .  . .@(1) @(O)! = 1 . In) = - 
The above consmction may be verified using the identity 

(9) 
1 

&@t"lo) 

aatn = qnatna  + at(-U P -N (In],,, + 2vInl-p.qK) for n 2 1 . (10) 

The boson realization of the algebra (4), following from (8) is given by 
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The Bargmann-Fock realization of the algebra (4) is obtained by the map 

in the space of analytic functions of the complex variable z .  The inner product structure 
which makes U and ut,  in the representation (12). Hermitian conjugates is 

(f, g) = (f (D,,,W + ZvD-,,,(z)) gfz)) ll=o , (13) 
The set of functions { z n / m  I n  = 0,1,2, . . .} is seen to form an orthonormal basis with 
respect to the inner product (13). In the undeformed limit ( p  = q = 1) the representation 
(12) assumes the form 

For the paraboson algebra ( 1 )  the numbs operator is known [6] to be given by N = 
; ( p p t + g t g )  - i ( 2 u  + I) .  The number operator for the general (p,g)deformed 
parabosonic algebra (4) can be obtained using a general procedure outlined in 1141. In 
the special case p = 1 an explicit expression for N can also be obtained by inverting the 
relations in (5) and (6): 

The construction of coherent states of the (p, q)-paraboson (4) is most easily done following 
a simple technique [6,15] applicable to any generalized boson oscillator. Let 

such that 

[ a , A t ] = l  [ A . a t ] = l  [ N , A ] = - A  [ N ,  A'] = A t .  (17) 
Then the coherent state lz) obeying ulz) = zlz) is obtained by taking Iz) - exp (zAt) IO). 
The normalized lz) is 

In the undeformed limit (p = q = 1) we get the known result [6,16] for the paraboson. It 
may also be noted that 12)' - exp (zu') 10) gives an eigenstate of A as has been pointed out 
already [6,15]. 

The spectrum-generating algebra for the (p,q)-parabosonic system (4) is a 
Llpn.q~(su(l, 1) 8 u(1)) 'in which the non-zero central term is essential for maintaining 
the two-parametric nature of the deformation. Our discussion of this specbum-generating 
algebra closely follows [5]. The generators of this dynamical algebra, apart from a central 
element Z, an as follows: 

Eo = $(N + z)  1 E+ =eat' B- = -ea' 

with = ( p  + q-')-' (1 + 2vx)-3/4(1 - 2ux)-l '4.  (1% 
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These generators obey the commutation relations 

The expression (q2 - (-2) / (92 - P - ~ ) ,  which becomes N + U +  4 in the limit p = 9 = 1, 
may be identified with the Hamiltonian of the system (4). The co-product rules for the 
generators preserving the algebraic structure (20) are 

A(2) = Z@ 1 + 1 @ Z 
A (B+) = E* 8 oh" + <-'A'' 8 B+ . 

A(B0)  = B o @ l  + 1 @ Bo 
(21) 

In an irreducible representation the central element Z assumes an arbitrary imaginary 
constant value. It plays a key role in imparting the two-parametric nature to the deformations 
as is evident from the fact that if we take Z = 0, then both the algebraic and co-algebraic 
structures may be simultaneously transformed to depend on the single parameter Q. To see 
this, we observe the following. The map 

(22) Boo=Eo &. = Bhh Z B d l  2 = z 

reduces the algebra (20) to the standard form [5] 

[2, .] = 0 [Bo, E*] =&B* 
with ij = p Q Z B Q .  

Note that p depends only on Q. However, when 5 # 0 the induced co-products for the 
generators depend on both the deformation parameters: 

A(2) = 2 8  1 + 1 @ 3 
A(E+) = &. @ $.*' + G-'AT' @ E+. 

A(&) = i o 8  1+ 1 @ io 
(24) 

In the limit h = 1 we recover the standard result for U p ( s u ( 1 ,  1)) [5]. The Casimir operator 
for the above spectrum-generating algebra Up~,p>(su(l, 1) 63 u ( l ) )  is given by 

From the map (22) it follows, however, that the operator C is the same as the Casimir 
operator C for Upr(su(l , l))  [5] apart from a numerical scale factor: 

. 
- (6Q-I - i-'Q)* - (Q-' - Q)" (26) 

2 
C=h'C where C =  B+B- + 

(Q' - e-') 
It has been noted 151 that the presence of the operator K induces an unbroken supersymmeay 
in the Fock space corresponding to the q-deformed parabosonic algebra (2). This property 
persists for the (p,q)deformed algebra (4). Additional freedom afforded by the two 
deformation parameters allows us to consider limiting cases which can be regarded, in 
the sense of 151, as modifications of various known oscillators. Following the analysis in 
151, let us define a oneparameter family of Hermitian operators 

o,(o) = e"oNa+p- + e-"aJ"+ o 01 -= z with P+ = 4 (1 z t  K) (27) 
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for a fixed w E R. Quite generally, the operators (O,(o)] follow the algebra 

{ O,(O), OS(0)} = 2w2(N+’)cos(or - 0) ( U J P -  + o-zutup,) . (28) 

For a choice 

oa=D(w) = ol(@) oa=x/Z(’JJ) = (29) 

( O ~ ( O ) , O ~ ( O ) ) = ~ S ~ ~ H ( W )  i, j =  1 , 2  (30) 

we recover the supersymmetry algebra [5] 

with a Hamiltonian 

H(w)  = wZ(N+’) ( $ ( N  + 1)P- + w?$(N)P+) . 

~ ( o )  12n) = w4”[hlP, , ( l  + 2 ~ x )  12n) 

(31) 
The Fock space shows features of unbroken supersymmetry: 

n = 0. I .  2, . . . 
n = I , z , .  . . . (32) 

~ ( w )  12n - 1) = ~ ~ “ [ h ] , , , ( l  + 2 u x )  1h - 1) 

Several special cases may be considered. For example, corresponding to a generalized 
oscillator with the algebra uut - utu = q N ( l  + Z u K ) ,  i.e. algebra (4) with q = 1 and 
p = q-I, the choice w = 1 leads to the Hamiltonian 

Similarly, for an oscillator obeying the algebra ut -quia = ( I  + 2vK).  i.e. algebra (4) 
with p = I ,  the choice o = 1 leads to the Hamiltonian 

1 H = (- I - q  - -) l + q  [ 1 - ~ ( ( l + q ) + ( I  - q ) K ) q N  
1 2v 1 

(34) 

In the absence of modification, i.e. when v = 0, the two Hamiltonians in (33) and (34) 
become equal corresponding to the fact that the generalized oscillators with uut -ut, = qN 
and uut - qui, = 1 are the same, both associated with $ ( N )  = (1 - q N ) / ( l  - q). 
Modification removes the symmetry. In the undeformed limit for any U E R, the 
Hamiltonians in (33) and (34) approach the classical expression H = N + ;(I - K) 
related (see [SI) to the Hamiltonian of the two-particle Calogero model. Consequently, we 
believe that the above discussion may throw light on possible integrable deformations of 
the Calogero model. 

p-’ 
symmetry. The symmetry noted above in connection with the unmodified limits of the 
Hamiltonians in (33) and (34) is only a special case of this. This symmetry is broken in 
the modification (4). Let us now consider a modification of the ( p ,  q)-oscillator algebra (3) 
preserving the q 

The ( p .  q)-oscillator algebra (3). with $ ( N )  = (qN - pWN)  / (q - p-I) ,  has a q  

p-’ symmetry. To this end, we take 

;;t - ql+zYP& = p-(s+”(l-Q)[l + 2,k’l 

[fi,;]=-; [fi,;+]=;+ 
k = (-1)s 

(35) 

corresponding to $(fi) = [fi + u(1- k)],,,. This modification of (1) is actually the same 
as the ( p ,  q)-paraboson algebra proposed in [7], though presented differently there. 

P*9 

Now, let 



E 8 2  Letfer to the Editor 

and 

These operators can be seen to generate a ( p ,  q)-deformation of the classical superalgebra 

[BO? ai] = fa* a-a+ - (q/P)Za+a- = [241,,q2 (38) 

osp(ll2) as follows: 

and 

[Bo, Vi] = +v* [ai, V*] = 0 

The dynamical algebra of the ( p .  q)-paraboson (35). with q U p-' symmetry, is another 
Up~,q>(su(l, 1) eB ~ ( 1 ) )  generated by {OD,&) defined above (36) and an additional central 
element, say 2, exactly as in the case of the oscillator (4); but, in this case, the algebra of 
(4,  a*, 21 is independent of v.  (Note that equations (38) and (39) above are to replace 
equations (41) and (44) of [7] which contain some errors). To obtain the Fock representation, 
Bargmann-Fock realization and coherent states for the ( p ,  q)-paraboson (35) one can follow 
the same procedure detailed above in the case of the modified ( p ,  q)-oscillator (4). When 
p = 1 the algebra (35) corresponds to a q-paraboson algebra 1171. In the undeformed limit 
( p  = q = 1) (36)-(39) represent the usual paraboson realition of the classical osp(ll2) 
(see, e.g. [IS]). 

Finally, let us note that the algebra (4) may be used to study a deformed centreless 
Virasoro algebra in which the operator K induces a doubling of the number of generators. 
Defining 

L, = pNa+"+la ~ . = L . K  n e Z  (40) 

one has, with [X, Y ] # , p  = ryXY -PYX, 

[L. ~ , ~ ~ n - m , ~ m - a  = [m - n ~ p . q ~ m + n  t 2 v ( - l ~ [ m  - n ~ - p , q t m t n  

[L, L ~ ] ~ - ~ , ~ ~ - ~ , ~ ~ ~  = [m -~I, ,~L,+, t 2 v ( - l ~ [ m  - ~ I - , , ~ L , + ~  . 
In the limit v = 0 the algebra (41) agrees with the deformations of the Virasoro algebra 
known already [13,19,20]. The algebra (41) is a special case of the generalized Virasoro 
algebra considered earlier 1211 as obtainable using any single-mode generalized oscillator 
algebra of the type (5). It is to be noted, however, that the closure property combined 
with the requirement of having c-number structure constants has enforced a doubling of the 
number of generators in the algebra (41). Having c-number smcture constants may be of 
importance in constructing a generalized Jacobi identity [ 13,201 for the deformed Vuasoro 
generators. A deformed Virasoro algebra associated with the ( p ,  q)-paraboson algebra (35) 
may also be studied along similar lines. 

[in* L ] ( - l ) m p - m . ( - , p q m - a  = [m - ~ I , , ~ L + ~  + 2v(-l)"[m - ~I-~,,L+. (41) - 
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In (41) the generators {&, LO, i + l ,  io] constitute a subalgebra. In the undeformed 
limit ( p  = q = 1) the algebra (41) has an interesting structure: 

It is to be noted that the closure property of the algebra (42) demands that both the 
commutators and anticommutators appear. To understand the possible structure of the 
central term in (42) it may be fruitful to consider a Sugawara-type construction based on 
multimode paraboson algebra. We will study this topic elsewhere. 
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